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Slender-body asymptotic theory is used to evaluate the translational and rotational
electrophoretic velocities of initially uncharged polarizable bodies of revolution. These
velocities are obtained as asymptotic expansions in the small particle slenderness.
Conducting particles which lack fore–aft symmetry translate parallel to the applied
field direction, regardless of their orientation relative to it. Both conducting and
dielectric particles tend to align with the field. The translational and rotational
velocities of dielectric particles are asymptotically smaller than those of comparable
conducting particles.

1. Introduction
Traditionally, the electrokinetic literature has focused upon flows around non-

polarizable surfaces (Anderson 1989) in which the zeta potential is considered a
physicochemical property of the solid–liquid interface. Following Levich (1962),
however, a substantial body of work in the Soviet and post-Soviet literature has
been dealing with flows around polarizable surfaces, in which the zeta potential is
affected by the externally applied field. The prevailing mathematical models for such
flows (Squires & Bazant 2004) employ the thin-Debye-layer limit and the small-zeta-
potential model, and are typically applied for ideally polarizable (i.e. conducting)
surfaces. The assumption of a thin Debye layer was relaxed by Yariv & Miloh (2008),
and that of small-zeta-potentials by Yariv (2008).

The basic configuration which exhibits the essential features of induced-charge flows
consists of an uncharged sphere in an unbounded fluid domain in which a uniform
electric field is imposed at large distances (Gamayunov, Murtsovkin & Dukhin 1986).
Since the highly symmetric flow pattern in that configuration does not result in
particle motion, subsequent investigations considered more complicated ‘symmetry-
broken’ geometries (Bazant & Squires 2004; Squires & Bazant 2004, 2006; Zhao &
Bau 2007; Gangwal et al. 2008). Of special interest are non-spherical particles. Using
qualitative arguments, Bazant & Squires (2004) suggested that such particles may
undergo electrophoretic motion despite their net zero charge. The general problem
of non-spherical particles was analysed by Yariv (2005) using tensorial symmetry
arguments. It was shown that the electrical force and torque on the particle, obtained
via integration of Maxwell stresses, are of the same scaling in the applied field as those
produced by the electro-osmotic slip. (The existence of an electrical force on a zero-
net-charge particle is discussed in Rivette & Baygents 1996 and Yariv 2006.) The first
explicit solutions for non-spherical particles were provided by Squires & Bazant (2006)
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who employed regular perturbations to investigate slightly perturbed cylinders and
spheres. It was found that such particles indeed undergo electrophoresis. Specifically,
when the electric field coincides with the particle symmetry axis, the electrophoretic
velocity is directed towards the ‘bluff’ end.

Subsequent papers addressed spheroidal particles. Using slender-body theory,
Saintillan, Darve & Shaqfeh (2006a) analysed the electro-rotation of conducting
spheroids, with the objective of modelling hydrodynamic interactions between rod-
like particles (Saintillan, Shaqfeh & Darve 2006b). A general analysis of spheroidal
particles was carried out by Yossifon, Frankel & Miloh (2007), making use of a
Robin-type boundary condition which enabled the analysis of flows about dielectric
non-spherical particles, the case of conductors emerging as a special case.

From the symmetry arguments of Yariv (2005) it follows that axisymmetric bodies
which possess fore–aft symmetry – such as spheroids – cannot undergo induced-
charge electrophoresis and therefore do not exhibit the full richness of symmetry-
broken geometries (Bazant & Squires 2004). In this paper we use slender-body theory
to investigate the general class of prolate axisymmetric particles (which may lack
fore–aft symmetry), thereby extending the work of Saintillan et al. (2006a). Slender-
body theory for arbitrary particle shapes has already been employed in the analysis
of fixed-charge electrophoresis of high-aspect-ratio colloidal particles (Solomentsev
& Anderson 1994); the present contribution presents a comparable investigation
of induced-charge flows, wherein the newly derived Robin-type boundary condition
(Yossifon et al. 2007) allows the analysis of both conducting and dielectric particles.

2. Problem formulation
Consider an initially uncharged particle of length 2a which may be either dielectric

(permittivity εp) or conducting. It is suspended in an electrolyte solution (permittivity
εf , viscosity η) and is exposed to a uniformly imposed electric field E∞ =E∞ Ê, Ê
being a unit vector in the applied field direction. We assume the particle to be
inert, with no chemical reactions occurring on its boundary s. Our interest lies in
the hydrodynamic and electrical loads exerted upon the particle. For simplicity, we
formulate below a stationary-particle problem; once the loads on such a particle
are evaluated, we employ standard resistance relations (Happel & Brenner 1965) to
extract the corresponding rectilinear and angular velocities of a comparable freely
suspended particle.

We employ a dimensionless formulation in which length variables are normalized
by a and the electric field by E∞. The stress unit is chosen as εf E2

∞; accordingly, forces
and torques are respectively normalized by εf E2

∞a2 and εf E2
∞a3, while velocities and

angular velocities are respectively normalized by εf E2
∞a/η and εf E2

∞/η. We focus
upon the thin-Debye-layer limit, where the Debye thickness λ is small compared with
a; the outer edge S of the Debye layer then coincides with s on the bulk scale. The
electric potential in the bulk fluid, ϕf , is governed by Laplace’s equation,

∇2ϕf = 0, (2.1)

the no-flux condition on S,

n̂ · ∇ϕf = 0 (2.2)

(in which n̂ is a unit normal pointing into the fluid), and the far-field condition,

∇ϕf → −Ê. (2.3)
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The asymptotic behaviour of ϕf at large distances from the particle can be written
as a series of spherical harmonics (Batchelor 1967). In view of (2.2) the monopole
term vanishes, whence the leading-order perturbation relative to the uniform field is
represented by a dipole of magnitude p:

ϕf ∼ −Ê · x +
1

4π

p · x
|x|3 + · · · . (2.4)

The slip velocity on S is provided by the Helmholtz–Smoluchowski formula,

v = ζ∇ϕf , (2.5)

in which the dimensionless ‘zeta potential’

ζ = ϕp|
s

− ϕf |
S

(2.6)

depends upon the electric potential ϕp within the particle.
To evaluate ϕp we employ the common linear capacitor model for the Debye layer,

valid for small zeta potentials (Squires & Bazant 2004). When the particle is dielectric,
ϕp is also governed by Laplace’s equation. The requisite matching between ϕp and ϕf

is expressed via the Robin condition (Yossifon et al. 2007)

ϕp|
s
+ αn̂ · ∇ϕp|

s
= ϕf |

S
(2.7)

wherein α =(εp/εf )(λ/a). In the limit α → ∞ of an ideally polarizable (i.e. conducting)
particle, condition (2.7) yields n̂ · ∇ϕp|

s
= 0, which in conjunction with Laplace’s

equation implies the familiar requirement of a uniform particle potential. Superficially,
the uniform value of ϕp may appear arbitrary, unrelated to the distribution of ϕf on S.
The indeterminacy in the zeta potential (2.6) is resolved by imposing a global charge
conservation constraint (Yariv 2005). Within the framework of a linear capacitor
model, in which the surface charge is proportional to ζ , this condition is∮

dAζ = 0. (2.8)

Note that when evaluated using (2.7) and (2.6), the divergence theorem readily shows
that (2.8) is automatically satisfied for all finite α values.

The slip distribution (2.5), together with the Stokes equations and the requirement
for velocity attenuation at large distances, serves to uniquely determine the flow field
about a stationary particle. This field, in turn, exerts a force F and a torque G on
the particle. Following the tensorial arguments of Yariv (2005), these hydrodynamic
loads must possess the form

F = F : Ê Ê, G = G : Ê Ê, (2.9)

in which F is a third-order tensor and G a third-order pseudo-tensor. These
dimensionless coefficients may depend upon α, the only physical parameter appearing
in the dimensionless problem formulation, as well as the particle geometry.

In addition to the hydrodynamic loads, the particle also experiences electrical
loads, which are obtained in principle as surface quadratures of Maxwell stresses. For
a particle in an unbounded fluid domain, the far-field behaviour (2.4) implies (Rivette
& Baygents 1996) that the electric force vanishes and the electric torque is

GE = p × Ê. (2.10)

If the particle is freely suspended, it will acquire rectilinear and angular velocities
which ensure it remains force- and torque-free. As in (2.9), these velocities have the
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Figure 1. Schematic.

form

U = U : Ê Ê, Ω = W : Ê Ê, (2.11)

in which the third-order tensor U and the third-order pseudo-tensor W are functions
of α and the particle geometry.

3. Bodies of revolution
We focus upon bodies of revolution whose symmetry axis is inclined at an angle

β relative to Ê, see figure 1. In a particle-fixed cylindrical coordinate system (r, θ, x)
the particle boundary is given by

r = κR(x), −1 < x < 1, (3.1)

in which the shape function R(x) satisfies

R(±1) = 0. (3.2)

With no loss of generality we also assume R = O(1). The parameter κ then represents
the particle slenderness; it is uniquely set by imposing a normalization condition,
say ∫ 1

−1

R(x) dx = 2. (3.3)

The only fixed vector appearing in the geometric specification of the particle is ê, a
particle-fixed unit vector attached to the symmetry axis. In view of their contraction
with Ê Ê, the most general form of the tensors F and G is (Yariv 2005)

F = f Iê + f ′ êêê + f ′′ êI, G = −gε · êê. (3.4)

Here, I is the idemfactor and ε is the alternating third-order pseudo-tensor. The four
scalar coefficients appearing in (3.4) may depend upon κ and the function R(x), but
not upon β . Equations (2.9) and (3.4) imply that the vector F is spanned by Ê and
ê, whereas the pseudo-vector

G = g(ê × Ê)(ê · Ê) (3.5)

is perpendicular to both. It is convenient to define a particle-fixed Cartesian system,
(x1, x2, x3) = (x, y, z), where the x2-axis lies in the Ê–ê plane (see figure 1). The
corresponding unit vectors are

ê1 = ê, ê2 = (Ê − ê cosβ)/ sinβ, ê3 = ê × Ê/ sinβ. (3.6)

Substitution into (3.5) then yields G = ê3G, in which

G = g sinβ cosβ. (3.7)
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The same symmetry relations hold for the electrical torque, which is therefore of the
form GE = ê3GE .

Similar argument also apply for the velocities of a freely suspended particle. Thus,
the tensorial coefficients in (2.11) adopt the form

U = uIê + u′ êêê + u′′ êI, W = −ωε · êê, (3.8)

where the four scalar coefficients are independent of β . The particle velocity U is
spanned by Ê and ê, U = ê1U1 + ê2U2, and the angular velocity is perpendicular to
both vectors, Ω = ê3Ω , wherein

Ω = ω sinβ cos β. (3.9)

Note that positive ω values represent angular motion which tends to align the particle
with the field.

4. Slender bodies
We analyse here the asymptotic limit of a slender particle, κ � 1. The focus upon this

limit implies an important difference between the present analysis and that of Yossifon
et al. (2007), where spheroids of arbitrary aspect ratio were analysed: since an
asymptotic expansion in κ implicitly assumes that all other parameters are O(1), it
is not a priori guaranteed that the case of a conducting particle can be obtained by
extracting the α → ∞ limit of the resulting expressions. It will become evident (see
e.g. (5.25)) that the limits κ → 0 and α → ∞ do not commute. Accordingly, the case
of a conducting particle must be analysed separately (using the consistency condition
(2.8)).

The slender limit is handled by matched asymptotic expansions (Cole 1968; Cox
1970). In principle, all equations in the fluid domain are solved separately in an ‘outer’
region, characterized by the particle length, and an ‘inner’ region, characterized by
the O(κ) cross-sectional dimension. The latter region is naturally handled using the
stretched radial coordinate ρ = r/κ .

The solution of the Neumann-type boundary-value problem (2.1)–(2.3) governing
ϕf is available in the literature (Cole 1968). The outer and inner expansions are

ϕf ∼ −x cosβ − r sinβ cos θ + O(κ2) for κ → 0, r fixed, (4.1)

ϕf ∼ −x cosβ − κ(ρ + R2/ρ) sin β cos θ + O(κ2 log κ) for κ → 0, ρ fixed. (4.2)

The latter is used to evaluate the electric field on S:

∇ϕf |
S

≈ 2êθ sinβ sin θ − êx cosβ. (4.3)

Hereafter, the approximation symbol ‘≈’ implies that the asymptotic error term is of
an algebraically small relative magnitude.

The electric potential within the particle, ϕp , is naturally evaluated using the inner
variables. For a conducting particle, ϕp is uniform and set by the integral condition
(2.8). Substitution of (4.2) into (2.8) in conjunction with (3.3) yields ϕp ≈ K cosβ , in
which

K = −1

2

∫ 1

−1

xR(x) dx (4.4)

is a geometric first moment (which vanishes for fore–aft symmetric particles).
Combining with (4.2) we find

ζ ≈ (x + K ) cos β. (4.5)
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For a dielectric particle, it is necessary to solve a boundary-value problem which
consists of the differential equation,

1

ρ

∂

∂ρ

(
ρ

∂ϕp

∂ρ

)
+

1

ρ2

∂2ϕp

∂θ2
+ κ2 ∂2ϕp

∂x2
= 0, (4.6)

the Robin condition (cf. (2.7))

κϕp + α

[
∂ϕp

∂ρ
− κ2 dR

dx

∂ϕp

∂x

]
[1 + O(κ2)] = κϕf at ρ = R(x), (4.7)

and the requirement of regularity on the symmetry axis ρ = 0. Straightforward cal-
culation yields

ϕp ∼ −x cosβ − κα
dR

dx
cos β + O(κ2). (4.8)

(Note that this expansion breaks down near rounded particle ends, where dR/dx

diverges. Our interest here, however, is in global quantities such as forces and torques,
obtained from integration over the entire x-domain; it is easily verified (see (5.24)–
(5.25)) that such end singularities are integrable.) Combining (4.8) with (4.2) we
therefore obtain

ζ ≈ κ

[
2R(x) sin β cos θ − α

dR

dx
cosβ

]
. (4.9)

Note the order of magnitude difference in the zeta potential (and consequent velocity
slip) between the conducting (ideal polarizabilty) case (4.5) and the dielectric (finite
polarizabilty) case (4.9).

5. The electrophoretic motion of a freely suspended particle
With the slip distribution provided by (2.5), it is possible in principle to evaluate the

velocity field v and the corresponding stress field σ , which can be integrated to yield
the hydrodynamic loads acting on a stationary particle. Here, following Yariv (2005)
and Saintillan et al. (2006a), we avoid this procedure by exploiting a method due
to Brenner (1964) which utilizes the Lorentz reciprocal relation (Happel & Brenner
1965), ∮

S

dA n̂ · σ · v̄ =

∮
S

dA n̂ · σ̄ · v, (5.1)

in which v̄ is any flow field that satisfies the Stokes equations and σ̄ the corresponding
stress field. The requisite loads are obtained by choosing v̄ as the velocity field which
corresponds to a fictitious translation or rotation of the particle. This method is
natural for slender bodies (Solomentsev & Anderson 1994; Saintillan et al. 2006a)
because solutions of the Stokes equations which correspond to their rigid-body motion
are already available (Cox 1970).

To find the ith component Fi (i = 1, 2) of the hydrodynamic force we choose v̄

as the velocity field due to a translation of a particle with a unit velocity in the
xi-direction, obtaining

Fi =

∮
S

dA n̂ · σ̄ · ζ∇ϕf . (5.2)

The solution of the Stokes equations for particle translation appear in Cox (1970).
For a longitudinal translation along the x1-axis the results of Cox (1970) yield the
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traction

n̂ · σ̄ ≈ F̄1

2πκR
êx. (5.3)

Here, F̄1 is the force per unit length in the x1-direction which is exerted upon the
translating particle. It was evaluated by Cox (1970) as an asymptotic series in 1/ log κ:

F̄1(x)/2π ∼ 1

log κ
+

1

log2 κ

(
log 2 − 1

2
+

1

2
log

1 − x2

R2(x)

)
+ O(log−3 κ). (5.4)

For a lateral translation along the x2-axis the results of Cox (1970) yield the traction

n̂ · σ̄ ≈ F̄2

2πκR
(êρ cos θ − êθ sin θ). (5.5)

Here, F̄2 is the force per unit length in the x2-direction which is exerted upon the
translating particle:

F̄2(x)/2π ∼ 2

log κ
+

2

log2 κ

(
log 2 +

1

2
+

1

2
log

1 − x2

R2(x)

)
+ O(log−3 κ). (5.6)

To obtain G we choose v̄ as the velocity field due to a fictitious rotation of a
comparable particle with a unit angular velocity in the x3-direction. Substituting
v̄|S = ê3 × x into (5.1) yields

G =

∮
S

dA n̂ · σ̄ · ζ∇ϕf . (5.7)

The field v̄ which corresponds to rigid-body rotation was calculated using the method
of Cox (1970). The traction is of the form (5.5),

n̂ · σ̄ ≈ F̄ rot
2

2πκR
(êρ cos θ − êθ sin θ), (5.8)

but now with the force density

F̄ rot
2 (x)/2π ∼ 2x

log κ
+

2x

log2 κ

(
log 2 − 1

2
+

1

2
log

1 − x2

R2(x)

)
+ O

(
log−3 κ

)
. (5.9)

Once the loads are calculated, the rectilinear and angular velocities of a comparable
freely suspended particle are obtained from the force- and torque-free conditions:

F1 + U1F̄ 1 = 0, F2 + U2F̄ 2 + ΩC̄ = 0, G + ΩḠ + U2C̄ + GE = 0. (5.10a,b,c)

Here, F̄ 1 and F̄ 2 are the forces associated with a unit-velocity translation in the x1- and
x2-directions, respectively; Ḡ is the torque associated with a unit-velocity rotation in
the x3-direction; and the coupling term C̄ represents the torque in the x3-direction due
to a unit-velocity translation in the x2-direction, or, equivalently (Happel & Brenner
1965), the force in the x2-direction due to a unit-velocity rotation in the x3-direction.
Note that (2.4), (2.10), and (4.1) imply that GE is O(κ2); in what follows it will
become evident that it is algebraically small compared with G for both conducting
and dielectric particles.

The forces F̄ 1 and F̄ 2 are respectively obtained from integration of (5.4) and (5.6).
To leading order:

F̄ 1 ∼ 4π

log κ
+ O(log−2 κ), F̄ 2 ∼ 8π

log κ
+ O(log−2 κ). (5.11)



92 E. Yariv

By definition, the torque Ḡ is provided by the integral

Ḡ =

∫ 1

−1

xF̄ rot
2 (x) dx; (5.12)

substitution of (5.9) yields:

3Ḡ

8π
∼ 1

log κ
+

1

log2 κ

[
3

4

∫ 1

−1

x2 log
1 − x2

R2(x)
dx − 1

2
+ log 2

]
+ O(log−3 κ). (5.13)

It is evident from (5.6) (or, alternatively, from (5.9)) that, to leading-order, C̄ ∼
2πL / log2 κ , wherein

L =

∫ 1

−1

x log
1 − x2

R2(x)
dx (5.14)

is a geometry-specific coefficient that vanishes for fore–aft symmetric particles.

5.1. Conducting particles

Consider first the case of a conducting particle, in which the zeta potential is provided
by (4.5). Substitution into (5.2) of (5.3)–(5.4) yields F1, whereas substitution of (5.5)–
(5.6) yields F2. We therefore obtain

F1 ∼ − 4π

log κ
K cos2 β, F2 ∼ − 8π

log κ
K sinβ cosβ, (5.15)

with an O(1/ log κ) relative asymptotic error. As required, both expressions vanish
for fore–aft symmetric particles.

Substitution of (5.8) into (5.7) yields

G ≈ − sinβ cos β

∫ 1

−1

(x + K )F̄ rot
2 (x) dx. (5.16)

Use of (5.9) then furnishes an asymptotic series in 1/ log κ . To leading order:

G ∼ − 8π

3 log κ
sinβ cosβ + O(log−2 κ). (5.17)

Consider now a freely suspended particle. When expressing the particle velocities as
asymptotic series in 1/ log κ , it is evident from (5.10) that they are O(1). To leading-
order, the coupling term does not affect the force- and torque-free balances, and we
find, with an O(log−1 κ) asymptotic error, that

U1 ∼ K cos2 β, U2 ∼ K sinβ cosβ, (5.18)

Ω ∼ sinβ cos β, or, equivalently, ω ∼ 1. (5.19)

The result (5.19) was obtained, to the same accuracy, for a slender ellipsoid by
Saintillan et al. (2006a). Here it is shown to hold for any slender shape. Moreover, if
the particle is also fore–aft symmetric, whereby K = 0, (5.16) reads G ≈ −Ḡ sinβ cosβ

(cf. (5.12)); With C̄ vanishing for such bodies (Happel & Brenner 1965) we find that
(5.19) holds to any order in the 1/ log κ expansion.

Use of (3.6) shows that (5.18) is equivalent to the invariant representation

U ∼ K (ê · Ê)Ê + O(log−1 κ). (5.20)

Remarkably, the particle translates along the straight field-lines of the applied field
regardless of its orientation relative to them (the speed, however, is orientation
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dependent). In terms of the representation (3.8), we find that u′ and u′′ vanish to
leading order, while u ∼ K . From (4.4) is it readily seen that K is positive for
particles which ‘point’ in the positive x-direction. For example, for a cone† with ê
pointing toward the apex, R(x) = 1 − x, we obtain from (4.4) K =1/3. The positive
sign of u agrees with the qualitative prediction of Bazant & Squires (2004). It is
easily explained for the case of a particle that points into the field (β =0). Then, the
flow about it is mathematically equivalent to that in fixed-charge electrophoresis with
constant zeta potential (namely K ) under the action of a uniform slip in the negative-
x direction. Such a leading-order mechanism is absent for non-slender shapes; indeed,
Squires & Bazant (2006) predicted negative values of u for near spheres.

5.2. Dielectric particles

The preceding analysis can be repeated for a dielectric particle, where (4.9) replaces
(4.5). When using (5.2) to evaluate the hydrodynamic forces, (3.2) now implies that
the O(1/ log κ) contributions from (5.4) and (5.6) vanish upon integration. Thus, we
find that

F1 ∼ παM
κ

log2 κ
cos2 β, F2 ∼ 2παM

κ

log2 κ
sinβ cos β (5.21)

with an O(1/ log κ) relative asymptotic error. Here

M =

∫ 1

−1

dR

dx
log

1 − x2

R2(x)
dx (5.22)

is a shape-dependent coefficient (that, as required, vanishes for fore–aft symmetric
particles). When using (5.7)–(5.8) to evaluate the hydrodynamic torque, we find

G ≈ κα sinβ cosβ

∫ 1

−1

dR

dx
F̄ rot

2 (x) dx. (5.23)

Substitution of (5.9) followed by integration by parts in conjunction with (3.3) provides
an asymptotic expansion of G. Use of the representation (3.7) then yields:

g

8πκα
∼ − 1

log κ
+

1

log2 κ

[
1

4

∫ 1

−1

x
dR

dx
log

1 − x2

R2(x)
dx +

1

2
− log 2

]
+ O(log−3 κ). (5.24)

Considering again the force- and torque-free conditions (5.10), we find that the
angular velocity is O(κ), whereas the logarithmically small forces render the rectilinear
velocities O(κ/ log κ). Thus, the angular velocity can be evaluated from (5.10 c), (5.13),
and (5.24) to two-term accuracy in the 1/ log κ expansion without any coupling effect.
Upon making use of the representation (3.9) we find:

ω ∼ 3ακ

[
1 +

1

4 log(1/κ)

∫ 1

−1

[
3x2 + x

dR

dx

]
log

1 − x2

R2
dx + O(log−2 κ)

]
. (5.25)

Note that the integral in the above formula vanishes for spheroids, where

R(x) = (4/π)
√

1 − x2 (cf. (3.3)).
From (5.21) we see that F2 is twice as large as F1, just as in the conducting case

(cf. (5.15)). It is however evident from (5.10 b) that the leading-order lateral motion
is coupled to the particle rotation; thus, the velocity of a freely suspended dielectric

† Superficially, it may appear that (3.2) renders the cone an inappropriate shape for the present
formulation; it is easily verified, however, that the discontinuity in R at x = − 1 constitutes a weak
singularity.
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particle is not directed parallel to the field. Indeed, straightforward calculation yields
here (cf. (5.20))

U ∼ ακ

4 log(1/κ)
[(3L + M )(ê · Ê)Ê − 3L (ê · Ê)2 ê] + O

(
κ

log2 κ

)
. (5.26)
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